%PDF- %PDF-
Direktori : /home/graphicd/public_html/vebto/vendor/jetbrains/phpstorm-stubs/fann/ |
Current File : /home/graphicd/public_html/vebto/vendor/jetbrains/phpstorm-stubs/fann/fann.php |
<?php // Start of Fann v.1 /** * Class FANNConnection */ class FANNConnection { public $weight; public $to_neuron; public $from_neuron; /** * The connection constructor * * @param int $from_neuron * @param int $to_neuron * @param float $weight */ public function __construct($from_neuron, $to_neuron, $weight) { } /** * Returns the postions of starting neuron. * * @return int The postions of starting neuron. */ public function getFromNeuron() { } /** * Returns the postions of terminating neuron * * @return int The postions of terminating neuron. */ public function getToNeuron() { } /** * Returns the connection weight * * @return void The connection weight. */ public function getWeight() { } /** * Sets the connections weight * * @param float $weight * * @return bool */ public function setWeight($weight) { } } /** * Trains on an entire dataset, for a period of time using the Cascade2 training algorithm * * @stub * * @param resource $ann * @param resource $data * @param int $max_neurons * @param int $neurons_between_reports * @param float $desired_error * * @return bool */ function fann_cascadetrain_on_data($ann, $data, $max_neurons, $neurons_between_reports, $desired_error) { } /** * Trains on an entire dataset read from file, for a period of time using the Cascade2 training algorithm. * * @stub * * @param resource $ann * @param string $filename * @param int $max_neurons * @param int $neurons_between_reports * @param float $desired_error * * @return bool */ function fann_cascadetrain_on_file($ann, $filename, $max_neurons, $neurons_between_reports, $desired_error) { } /** * Clears scaling parameters * * @stub * * @param resource $ann * * @return bool */ function fann_clear_scaling_params($ann) { } /** * Creates a copy of a fann structure * * @stub * * @param resource $ann * * @return resource|false Returns a copy of neural network resource on success, or false on error */ function fann_copy($ann) { } /** * Constructs a backpropagation neural network from a configuration file * * @stub * * @param string $configuration_file * * @return resource */ function fann_create_from_file($configuration_file) { } /** * Creates a standard backpropagation neural network which is not fully connectected and has shortcut connections * * @stub * * @param int $num_layers * @param array $layers * * @return resource|false Returns a neural network resource on success, or false on error. */ function fann_create_shortcut_array($num_layers, $layers) { } /** * Creates a standard backpropagation neural network which is not fully connectected and has shortcut connections * * @stub-variable-parameters * @stub * * @param int $num_layers * @param int $num_neurons1 * @param int $num_neurons2 * @param int $_ * * @return resource|false Returns a neural network resource on success, or false on error. */ function fann_create_shortcut($num_layers, $num_neurons1, $num_neurons2, $_ = NULL) { } /** * Creates a standard backpropagation neural network, which is not fully connected using an array of layer sizes * * @stub * * @param float $connection_rate * @param int $num_layers * @param array $layers * * @return resource|false Returns a neural network resource on success, or false on error. */ function fann_create_sparse_array($connection_rate, $num_layers, $layers) { } /** * Creates a standard backpropagation neural network, which is not fully connected * * @stub-variable-parameters * @stub * * @param float $connection_rate * @param int $num_layers * @param int $num_neurons1 * @param int $num_neurons2 * @param int $_ * * @return resource|false Returns a neural network resource on success, or false on error. */ function fann_create_sparse($connection_rate, $num_layers, $num_neurons1, $num_neurons2, $_ = NULL) { } /** * Creates a standard fully connected backpropagation neural network using an array of layer sizes * * @stub * * @param int $num_layers * @param array $layers * * @return resource|false Returns a neural network resource on success, or false on error. */ function fann_create_standard_array($num_layers, $layers) { } /** * Creates a standard fully connected backpropagation neural network * * @stub-variable-parameters * @stub * * @param int $num_layers * @param int $num_neurons1 * @param int $num_neurons2 * @param int $_ * * @return resource|false Returns a neural network resource on success, or false on error. */ function fann_create_standard($num_layers, $num_neurons1, $num_neurons2, $_ = NULL) { } /** * Creates the training data struct from a user supplied function * * @stub * * @param int $num_data * @param int $num_input * @param int $num_output * @param callable $user_function * * @return resource */ function fann_create_train_from_callback($num_data, $num_input, $num_output, $user_function) { } /** * Creates an empty training data struct * * @stub * * @param int $num_data * @param int $num_input * @param int $num_output * * @return resource */ function fann_create_train($num_data, $num_input, $num_output) { } /** * Scale data in input vector after get it from ann based on previously calculated parameters * * @stub * * @param resource $ann * @param array $input_vector * * @return bool */ function fann_descale_input($ann, $input_vector) { } /** * Scale data in output vector after get it from ann based on previously calculated parameters * * @stub * * @param resource $ann * @param array $output_vector * * @return bool */ function fann_descale_output($ann, $output_vector) { } /** * Descale input and output data based on previously calculated parameters * * @stub * * @param resource $ann * @param resource $train_data * * @return bool */ function fann_descale_train($ann, $train_data) { } /** * Destroys the entire network and properly freeing all the associated memory * * @stub * * @param resource $ann * * @return bool */ function fann_destroy($ann) { } /** * Destructs the training data * * @stub * * @param resource $train_data * * @return bool */ function fann_destroy_train($train_data) { } /** * Returns an exact copy of a fann train data * * @stub * * @param resource $data * * @return resource */ function fann_duplicate_train_data($data) { } /** * Returns the activation function * * @stub * * @param resource $ann * @param int $layer * @param int $neuron * * @return int|false constant or -1 if the neuron is not defined in the neural network, or false on error. */ function fann_get_activation_function($ann, $layer, $neuron) { } /** * Returns the activation steepness for supplied neuron and layer number * * @stub * * @param resource $ann * @param int $layer * @param int $neuron * * @return float|false The activation steepness for the neuron or -1 if the neuron is not defined in the neural network, or false on error. */ function fann_get_activation_steepness($ann, $layer, $neuron) { } /** * Get the number of bias in each layer in the network * * @stub * * @param resource $ann * * @return array An array of numbers of bias in each layer */ function fann_get_bias_array($ann) { } /** * Returns the bit fail limit used during training * * @stub * * @param resource $ann * * @return float|false The bit fail limit, or false on error. */ function fann_get_bit_fail_limit($ann) { } /** * The number of fail bits * * @stub * * @param resource $ann * * @return int|false The number of bits fail, or false on error. */ function fann_get_bit_fail($ann) { } /** * Returns the number of cascade activation functions * * @stub * * @param resource $ann * * @return int|false The number of cascade activation functions, or false on error. */ function fann_get_cascade_activation_functions_count($ann) { } /** * Returns the cascade activation functions * * @stub * * @param resource $ann * * @return array|false The cascade activation functions, or false on error. */ function fann_get_cascade_activation_functions($ann) { } /** * The number of activation steepnesses * * @stub * * @param resource $ann * * @return int|false The number of activation steepnesses, or false on error. */ function fann_get_cascade_activation_steepnesses_count($ann) { } /** * Returns the cascade activation steepnesses * * @stub * * @param resource $ann * * @return array|false The cascade activation steepnesses, or false on error. */ function fann_get_cascade_activation_steepnesses($ann) { } /** * Returns the cascade candidate change fraction * * @stub * * @param resource $ann * * @return float|false The cascade candidate change fraction, or false on error. */ function fann_get_cascade_candidate_change_fraction($ann) { } /** * Return the candidate limit * * @stub * * @param resource $ann * * @return float|false The candidate limit, or false on error. */ function fann_get_cascade_candidate_limit($ann) { } /** * Returns the number of cascade candidate stagnation epochs * * @stub * * @param resource $ann * * @return float|false The number of cascade candidate stagnation epochs, or false on error. */ function fann_get_cascade_candidate_stagnation_epochs($ann) { } /** * Returns the maximum candidate epochs * * @stub * * @param resource $ann * * @return int|false The maximum candidate epochs, or false on error. */ function fann_get_cascade_max_cand_epochs($ann) { } /** * Returns the maximum out epochs * * @stub * * @param resource $ann * * @return int|false The maximum out epochs, or false on error. */ function fann_get_cascade_max_out_epochs($ann) { } /** * Returns the minimum candidate epochs * * @stub * * @param resource $ann * * @return int|false The minimum candidate epochs, or false on error. */ function fann_get_cascade_min_cand_epochs($ann) { } /** * Returns the minimum out epochs * * @stub * * @param resource $ann * * @return int|false The minimum out epochs, or false on error. */ function fann_get_cascade_min_out_epochs($ann) { } /** * Returns the number of candidate groups * * @stub * * @param resource $ann * * @return int|false The number of candidate groups, or false on error. */ function fann_get_cascade_num_candidate_groups($ann) { } /** * Returns the number of candidates used during training * * @stub * * @param resource $ann * * @return int|false The number of candidates used during training, or false on error. */ function fann_get_cascade_num_candidates($ann) { } /** * Returns the cascade output change fraction * * @stub * * @param resource $ann * * @return float|false The cascade output change fraction, or false on error. */ function fann_get_cascade_output_change_fraction($ann) { } /** * Returns the number of cascade output stagnation epochs * * @stub * * @param resource $ann * * @return int|false The number of cascade output stagnation epochs, or false on error. */ function fann_get_cascade_output_stagnation_epochs($ann) { } /** * Returns the weight multiplier * * @stub * * @param resource $ann * * @return float|false The weight multiplier, or false on error. */ function fann_get_cascade_weight_multiplier($ann) { } /** * Get connections in the network * * @stub * * @param resource $ann * * @return array An array of connections in the network */ function fann_get_connection_array($ann) { } /** * Get the connection rate used when the network was created * * @stub * * @param resource $ann * * @return float|false The connection rate used when the network was created, or false on error. */ function fann_get_connection_rate($ann) { } /** * Returns the last error number * * @stub * * @param resource $errdat * * @return int|false The error number, or false on error. */ function fann_get_errno($errdat) { } /** * Returns the last errstr * * @stub * * @param resource $errdat * * @return string|false The last error string, or false on error. */ function fann_get_errstr($errdat) { } /** * Get the number of neurons in each layer in the network * * @stub * * @param resource $ann * * @return array An array of numbers of neurons in each leayer */ function fann_get_layer_array($ann) { } /** * Returns the learning momentum * * @stub * * @param resource $ann * * @return float|false The learning momentum, or false on error. */ function fann_get_learning_momentum($ann) { } /** * Returns the learning rate * * @stub * * @param resource $ann * * @return float|false The learning rate, or false on error. */ function fann_get_learning_rate($ann) { } /** * Reads the mean square error from the network * * @stub * * @param resource $ann * * @return float|false The mean square error, or false on error. */ function fann_get_MSE($ann) { } /** * Get the type of neural network it was created as * * @stub * * @param resource $ann * * @return int|false constant, or false on error. */ function fann_get_network_type($ann) { } /** * Get the number of input neurons * * @stub * * @param resource $ann * * @return int|false Number of input neurons, or false on error */ function fann_get_num_input($ann) { } /** * Get the number of layers in the neural network * * @stub * * @param resource $ann * * @return int|false The number of leayers in the neural network, or false on error. */ function fann_get_num_layers($ann) { } /** * Get the number of output neurons * * @stub * * @param resource $ann * * @return int|false Number of output neurons, or false on error */ function fann_get_num_output($ann) { } /** * Returns the decay which is a factor that weights should decrease in each iteration during quickprop training * * @stub * * @param resource $ann * * @return float|false The decay, or false on error. */ function fann_get_quickprop_decay($ann) { } /** * Returns the mu factor * * @stub * * @param resource $ann * * @return float|false The mu factor, or false on error. */ function fann_get_quickprop_mu($ann) { } /** * Returns the increase factor used during RPROP training * * @stub * * @param resource $ann * * @return float|false The decrease factor, or false on error. */ function fann_get_rprop_decrease_factor($ann) { } /** * Returns the maximum step-size * * @stub * * @param resource $ann * * @return float|false The maximum step-size, or false on error. */ function fann_get_rprop_delta_max($ann) { } /** * Returns the minimum step-size * * @stub * * @param resource $ann * * @return float|false The minimum step-size, or false on error. */ function fann_get_rprop_delta_min($ann) { } /** * Returns the initial step-size * * @stub * * @param resource $ann * * @return int|false The initial step-size, or false on error. */ function fann_get_rprop_delta_zero($ann) { } /** * Returns the increase factor used during RPROP training * * @stub * * @param resource $ann * * @return float|false The increase factor, or false on error. */ function fann_get_rprop_increase_factor($ann) { } /** * Returns the sarprop step error shift * * @stub * * @param resource $ann * * @return float|false The sarprop step error shift , or false on error. */ function fann_get_sarprop_step_error_shift($ann) { } /** * Returns the sarprop step error threshold factor * * @stub * * @param resource $ann * * @return float|false The sarprop step error threshold factor, or false on error. */ function fann_get_sarprop_step_error_threshold_factor($ann) { } /** * Returns the sarprop temperature * * @stub * * @param resource $ann * * @return float|false The sarprop temperature, or false on error. */ function fann_get_sarprop_temperature($ann) { } /** * Returns the sarprop weight decay shift * * @stub * * @param resource $ann * * @return float|false The sarprop weight decay shift, or false on error. */ function fann_get_sarprop_weight_decay_shift($ann) { } /** * Get the total number of connections in the entire network * * @stub * * @param resource $ann * * @return int|false Total number of connections in the entire network, or false on error */ function fann_get_total_connections($ann) { } /** * Get the total number of neurons in the entire network * * @stub * * @param resource $ann * * @return int|false Total number of neurons in the entire network, or false on error. */ function fann_get_total_neurons($ann) { } /** * Returns the error function used during training * * @stub * * @param resource $ann * * @return int|false The constant, or false on error. */ function fann_get_train_error_function($ann) { } /** * Returns the training algorithm * * @stub * * @param resource $ann * * @return int|false constant, or false on error. */ function fann_get_training_algorithm($ann) { } /** * Returns the stop function used during training * * @stub * * @param resource $ann * * @return int|false The constant, or false on error. */ function fann_get_train_stop_function($ann) { } /** * Initialize the weights using Widrow + Nguyen’s algorithm * * @stub * * @param resource $ann * @param resource $train_data * * @return bool */ function fann_init_weights($ann, $train_data) { } /** * Returns the number of training patterns in the train data * * @stub * * @param resource $data * * @return int|false Number of elements in the train data ``resource``, or false on error. */ function fann_length_train_data($data) { } /** * Merges the train data * * @stub * * @param resource $data1 * @param resource $data2 * * @return resource|false New merged train data ``resource``, or false on error. */ function fann_merge_train_data($data1, $data2) { } /** * Returns the number of inputs in each of the training patterns in the train data * * @stub * * @param resource $data * * @return int|false The number of inputs, or false on error. */ function fann_num_input_train_data($data) { } /** * Returns the number of outputs in each of the training patterns in the train data * * @stub * * @param resource $data * * @return int|false The number of outputs, or false on error. */ function fann_num_output_train_data($data) { } /** * Prints the error string * * @stub * * @param string $errdat * * @return void */ function fann_print_error($errdat) { } /** * Give each connection a random weight between min_weight and max_weight * * @stub * * @param resource $ann * @param float $min_weight * @param float $max_weight * * @return bool */ function fann_randomize_weights($ann, $min_weight, $max_weight) { } /** * Reads a file that stores training data * * @stub * * @param string $filename * * @return resource */ function fann_read_train_from_file($filename) { } /** * Resets the last error number * * @stub * * @param resource $errdat * * @return void */ function fann_reset_errno($errdat) { } /** * Resets the last error string * * @stub * * @param resource $errdat * * @return void */ function fann_reset_errstr($errdat) { } /** * Resets the mean square error from the network * * @stub * * @param string $ann * * @return bool */ function fann_reset_MSE($ann) { } /** * Will run input through the neural network * * @stub * * @param resource $ann * @param array $input * * @return array|false Array of output values, or false on error */ function fann_run($ann, $input) { } /** * Saves the entire network to a configuration file * * @stub * * @param resource $ann * @param string $configuration_file * * @return bool */ function fann_save($ann, $configuration_file) { } /** * Save the training structure to a file * * @stub * * @param resource $data * @param string $file_name * * @return bool */ function fann_save_train($data, $file_name) { } /** * Scale data in input vector before feed it to ann based on previously calculated parameters * * @stub * * @param resource $ann * @param array $input_vector * * @return bool */ function fann_scale_input($ann, $input_vector) { } /** * Scales the inputs in the training data to the specified range * * @stub * * @param resource $train_data * @param float $new_min * @param float $new_max * * @return bool */ function fann_scale_input_train_data($train_data, $new_min, $new_max) { } /** * Scale data in output vector before feed it to ann based on previously calculated parameters * * @stub * * @param resource $ann * @param array $output_vector * * @return bool */ function fann_scale_output($ann, $output_vector) { } /** * Scales the outputs in the training data to the specified range * * @stub * * @param resource $train_data * @param float $new_min * @param float $new_max * * @return bool */ function fann_scale_output_train_data($train_data, $new_min, $new_max) { } /** * Scales the inputs and outputs in the training data to the specified range * * @stub * * @param resource $train_data * @param float $new_min * @param float $new_max * * @return bool */ function fann_scale_train_data($train_data, $new_min, $new_max) { } /** * Scale input and output data based on previously calculated parameters * * @stub * * @param resource $ann * @param resource $train_data * * @return bool */ function fann_scale_train($ann, $train_data) { } /** * Sets the activation function for all of the hidden layers * * @stub * * @param resource $ann * @param int $activation_function * * @return bool */ function fann_set_activation_function_hidden($ann, $activation_function) { } /** * Sets the activation function for all the neurons in the supplied layer. * * @stub * * @param resource $ann * @param int $activation_function * @param int $layer * * @return bool */ function fann_set_activation_function_layer($ann, $activation_function, $layer) { } /** * Sets the activation function for the output layer * * @stub * * @param resource $ann * @param int $activation_function * * @return bool */ function fann_set_activation_function_output($ann, $activation_function) { } /** * Sets the activation function for supplied neuron and layer * * @stub * * @param resource $ann * @param int $activation_function * @param int $layer * @param int $neuron * * @return bool */ function fann_set_activation_function($ann, $activation_function, $layer, $neuron) { } /** * Sets the steepness of the activation steepness for all neurons in the all hidden layers * * @stub * * @param resource $ann * @param float $activation_steepness * * @return bool */ function fann_set_activation_steepness_hidden($ann, $activation_steepness) { } /** * Sets the activation steepness for all of the neurons in the supplied layer number * * @stub * * @param resource $ann * @param float $activation_steepness * @param int $layer * * @return bool */ function fann_set_activation_steepness_layer($ann, $activation_steepness, $layer) { } /** * Sets the steepness of the activation steepness in the output layer * * @stub * * @param resource $ann * @param float $activation_steepness * * @return bool */ function fann_set_activation_steepness_output($ann, $activation_steepness) { } /** * Sets the activation steepness for supplied neuron and layer number * * @stub * * @param resource $ann * @param float $activation_steepness * @param int $layer * @param int $neuron * * @return bool */ function fann_set_activation_steepness($ann, $activation_steepness, $layer, $neuron) { } /** * Set the bit fail limit used during training * * @stub * * @param resource $ann * @param float $bit_fail_limit * * @return bool */ function fann_set_bit_fail_limit($ann, $bit_fail_limit) { } /** * Sets the callback function for use during training * * @stub * * @param resource $ann * @param collable $callback * * @return bool */ function fann_set_callback($ann, $callback) { } /** * Sets the array of cascade candidate activation functions * * @stub * * @param resource $ann * @param array $cascade_activation_functions * * @return bool */ function fann_set_cascade_activation_functions($ann, $cascade_activation_functions) { } /** * Sets the array of cascade candidate activation steepnesses * * @stub * * @param resource $ann * @param array $cascade_activation_steepnesses_count * * @return bool */ function fann_set_cascade_activation_steepnesses($ann, $cascade_activation_steepnesses_count) { } /** * Sets the cascade candidate change fraction * * @stub * * @param resource $ann * @param float $cascade_candidate_change_fraction * * @return bool */ function fann_set_cascade_candidate_change_fraction($ann, $cascade_candidate_change_fraction) { } /** * Sets the candidate limit * * @stub * * @param resource $ann * @param float $cascade_candidate_limit * * @return bool */ function fann_set_cascade_candidate_limit($ann, $cascade_candidate_limit) { } /** * Sets the number of cascade candidate stagnation epochs * * @stub * * @param resource $ann * @param int $cascade_candidate_stagnation_epochs * * @return bool */ function fann_set_cascade_candidate_stagnation_epochs($ann, $cascade_candidate_stagnation_epochs) { } /** * Sets the max candidate epochs * * @stub * * @param resource $ann * @param int $cascade_max_cand_epochs * * @return bool */ function fann_set_cascade_max_cand_epochs($ann, $cascade_max_cand_epochs) { } /** * Sets the maximum out epochs * * @stub * * @param resource $ann * @param int $cascade_max_out_epochs * * @return bool */ function fann_set_cascade_max_out_epochs($ann, $cascade_max_out_epochs) { } /** * Sets the min candidate epochs * * @stub * * @param resource $ann * @param int $cascade_min_cand_epochs * * @return bool */ function fann_set_cascade_min_cand_epochs($ann, $cascade_min_cand_epochs) { } /** * Sets the minimum out epochs * * @stub * * @param resource $ann * @param int $cascade_min_out_epochs * * @return bool */ function fann_set_cascade_min_out_epochs($ann, $cascade_min_out_epochs) { } /** * Sets the number of candidate groups * * @stub * * @param resource $ann * @param int $cascade_num_candidate_groups * * @return bool */ function fann_set_cascade_num_candidate_groups($ann, $cascade_num_candidate_groups) { } /** * Sets the cascade output change fraction * * @stub * * @param resource $ann * @param float $cascade_output_change_fraction * * @return bool */ function fann_set_cascade_output_change_fraction($ann, $cascade_output_change_fraction) { } /** * Sets the number of cascade output stagnation epochs * * @stub * * @param resource $ann * @param int $cascade_output_stagnation_epochs * * @return bool */ function fann_set_cascade_output_stagnation_epochs($ann, $cascade_output_stagnation_epochs) { } /** * Sets the weight multiplier * * @stub * * @param resource $ann * @param float $cascade_weight_multiplier * * @return bool */ function fann_set_cascade_weight_multiplier($ann, $cascade_weight_multiplier) { } /** * Sets where the errors are logged to * * @stub * * @param resource $errdat * @param string $log_file * * @return void */ function fann_set_error_log($errdat, $log_file) { } /** * Calculate input scaling parameters for future use based on training data * * @stub * * @param resource $ann * @param resource $train_data * @param float $new_input_min * @param float $new_input_max * * @return bool */ function fann_set_input_scaling_params($ann, $train_data, $new_input_min, $new_input_max) { } /** * Sets the learning momentum * * @stub * * @param resource $ann * @param float $learning_momentum * * @return bool */ function fann_set_learning_momentum($ann, $learning_momentum) { } /** * Sets the learning rate * * @stub * * @param resource $ann * @param float $learning_rate * * @return bool */ function fann_set_learning_rate($ann, $learning_rate) { } /** * Calculate output scaling parameters for future use based on training data * * @stub * * @param resource $ann * @param resource $train_data * @param float $new_output_min * @param float $new_output_max * * @return bool */ function fann_set_output_scaling_params($ann, $train_data, $new_output_min, $new_output_max) { } /** * Sets the quickprop decay factor * * @stub * * @param resource $ann * @param float $quickprop_decay * * @return bool */ function fann_set_quickprop_decay($ann, $quickprop_decay) { } /** * Sets the quickprop mu factor * * @stub * * @param resource $ann * @param float $quickprop_mu * * @return bool */ function fann_set_quickprop_mu($ann, $quickprop_mu) { } /** * Sets the decrease factor used during RPROP training * * @stub * * @param resource $ann * @param float $rprop_decrease_factor * * @return bool */ function fann_set_rprop_decrease_factor($ann, $rprop_decrease_factor) { } /** * Sets the maximum step-size * * @stub * * @param resource $ann * @param float $rprop_delta_max * * @return bool */ function fann_set_rprop_delta_max($ann, $rprop_delta_max) { } /** * Sets the minimum step-size * * @stub * * @param resource $ann * @param float $rprop_delta_min * * @return bool */ function fann_set_rprop_delta_min($ann, $rprop_delta_min) { } /** * Sets the initial step-size * * @stub * * @param resource $ann * @param float $rprop_delta_zero * * @return bool */ function fann_set_rprop_delta_zero($ann, $rprop_delta_zero) { } /** * Sets the increase factor used during RPROP training * * @stub * * @param resource $ann * @param float $rprop_increase_factor * * @return bool */ function fann_set_rprop_increase_factor($ann, $rprop_increase_factor) { } /** * Sets the sarprop step error shift * * @stub * * @param resource $ann * @param float $sarprop_step_error_shift * * @return bool */ function fann_set_sarprop_step_error_shift($ann, $sarprop_step_error_shift) { } /** * Sets the sarprop step error threshold factor * * @stub * * @param resource $ann * @param float $sarprop_step_error_threshold_factor * * @return bool */ function fann_set_sarprop_step_error_threshold_factor($ann, $sarprop_step_error_threshold_factor) { } /** * Sets the sarprop temperature * * @stub * * @param resource $ann * @param float $sarprop_temperature * * @return bool */ function fann_set_sarprop_temperature($ann, $sarprop_temperature) { } /** * Sets the sarprop weight decay shift * * @stub * * @param resource $ann * @param float $sarprop_weight_decay_shift * * @return bool */ function fann_set_sarprop_weight_decay_shift($ann, $sarprop_weight_decay_shift) { } /** * Calculate input and output scaling parameters for future use based on training data * * @stub * * @param resource $ann * @param resource $train_data * @param float $new_input_min * @param float $new_input_max * @param float $new_output_min * @param float $new_output_max * * @return bool */ function fann_set_scaling_params($ann, $train_data, $new_input_min, $new_input_max, $new_output_min, $new_output_max) { } /** * Sets the error function used during training * * @stub * * @param resource $ann * @param int $error_function * * @return bool */ function fann_set_train_error_function($ann, $error_function) { } /** * Sets the training algorithm * * @stub * * @param resource $ann * @param int $training_algorithm * * @return bool */ function fann_set_training_algorithm($ann, $training_algorithm) { } /** * Sets the stop function used during training * * @stub * * @param resource $ann * @param int $stop_function * * @return bool */ function fann_set_train_stop_function($ann, $stop_function) { } /** * Set connections in the network * * @stub * * @param resource $ann * @param array $connections * * @return bool */ function fann_set_weight_array($ann, $connections) { } /** * Set a connection in the network * * @stub * * @param resource $ann * @param int $from_neuron * @param int $to_neuron * @param float $weight * * @return bool */ function fann_set_weight($ann, $from_neuron, $to_neuron, $weight) { } /** * Shuffles training data, randomizing the order * * @stub * * @param resource $train_data * * @return bool */ function fann_shuffle_train_data($train_data) { } /** * Returns an copy of a subset of the train data * * @stub * * @param resource $data * @param int $pos * @param int $length * * @return resource */ function fann_subset_train_data($data, $pos, $length) { } /** * Test a set of training data and calculates the MSE for the training data * * @stub * * @param resource $ann * @param resource $data * * @return float|false The updated MSE, or false on error. */ function fann_test_data($ann, $data) { } /** * Test with a set of inputs, and a set of desired outputs * * @stub * * @param resource $ann * @param array $input * @param array $desired_output * * @return bool */ function fann_test($ann, $input, $desired_output) { } /** * Train one epoch with a set of training data * * @stub * * @param resource $ann * @param resource $data * * @return float|false The MSE, or false on error. */ function fann_train_epoch($ann, $data) { } /** * Trains on an entire dataset for a period of time * * @stub * * @param resource $ann * @param resource $data * @param int $max_epochs * @param int $epochs_between_reports * @param float $desired_error * * @return bool */ function fann_train_on_data($ann, $data, $max_epochs, $epochs_between_reports, $desired_error) { } /** * Trains on an entire dataset, which is read from file, for a period of time * * @stub * * @param resource $ann * @param string $filename * @param int $max_epochs * @param int $epochs_between_reports * @param float $desired_error * * @return bool */ function fann_train_on_file($ann, $filename, $max_epochs, $epochs_between_reports, $desired_error) { } /** * Train one iteration with a set of inputs, and a set of desired outputs * * @stub * * @param resource $ann * @param array $input * @param array $desired_output * * @return bool */ function fann_train($ann, $input, $desired_output) { } define('FANN_TRAIN_INCREMENTAL', 0); define('FANN_TRAIN_BATCH', 1); define('FANN_TRAIN_RPROP', 2); define('FANN_TRAIN_QUICKPROP', 3); define('FANN_TRAIN_SARPROP', 4); define('FANN_LINEAR', 0); define('FANN_THRESHOLD', 1); define('FANN_THRESHOLD_SYMMETRIC', 2); define('FANN_SIGMOID', 3); define('FANN_SIGMOID_STEPWISE', 4); define('FANN_SIGMOID_SYMMETRIC', 5); define('FANN_SIGMOID_SYMMETRIC_STEPWISE', 6); define('FANN_GAUSSIAN', 7); define('FANN_GAUSSIAN_SYMMETRIC', 8); define('FANN_GAUSSIAN_STEPWISE', 9); define('FANN_ELLIOT', 10); define('FANN_ELLIOT_SYMMETRIC', 11); define('FANN_LINEAR_PIECE', 12); define('FANN_LINEAR_PIECE_SYMMETRIC', 13); define('FANN_SIN_SYMMETRIC', 14); define('FANN_COS_SYMMETRIC', 15); define('FANN_SIN', 16); define('FANN_COS', 17); define('FANN_ERRORFUNC_LINEAR', 0); define('FANN_ERRORFUNC_TANH', 1); define('FANN_STOPFUNC_MSE', 0); define('FANN_STOPFUNC_BIT', 1); define('FANN_NETTYPE_LAYER', 0); define('FANN_NETTYPE_SHORTCUT', 1); define('FANN_E_NO_ERROR', 0); define('FANN_E_CANT_OPEN_CONFIG_R', 1); define('FANN_E_CANT_OPEN_CONFIG_W', 2); define('FANN_E_WRONG_CONFIG_VERSION', 3); define('FANN_E_CANT_READ_CONFIG', 4); define('FANN_E_CANT_READ_NEURON', 5); define('FANN_E_CANT_READ_CONNECTIONS', 6); define('FANN_E_WRONG_NUM_CONNECTIONS', 7); define('FANN_E_CANT_OPEN_TD_W', 8); define('FANN_E_CANT_OPEN_TD_R', 9); define('FANN_E_CANT_READ_TD', 10); define('FANN_E_CANT_ALLOCATE_MEM', 11); define('FANN_E_CANT_TRAIN_ACTIVATION', 12); define('FANN_E_CANT_USE_ACTIVATION', 13); define('FANN_E_TRAIN_DATA_MISMATCH', 14); define('FANN_E_CANT_USE_TRAIN_ALG', 15); define('FANN_E_TRAIN_DATA_SUBSET', 16); define('FANN_E_INDEX_OUT_OF_BOUND', 17); define('FANN_E_SCALE_NOT_PRESENT', 18); define('FANN_E_INPUT_NO_MATCH', 19); define('FANN_E_OUTPUT_NO_MATCH', 20); define('FANN_VERSION', '2.2'); // End of Fann v.1.0