%PDF- %PDF-
| Direktori : /home/graphicd/public_html/vebto/vendor/ongr/elasticsearch-dsl/docs/Query/TermLevel/ |
| Current File : /home/graphicd/public_html/vebto/vendor/ongr/elasticsearch-dsl/docs/Query/TermLevel/Fuzzy.md |
# Fuzzy Query
> More info about fuzzy query is in the [official elasticsearch docs][1]
The fuzzy query uses similarity based on Levenshtein edit distance for string fields, and a +/- margin on numeric and
date fields.
## Simple example
```JSON
{
"fuzzy" : { "user" : "ki" }
}
```
In DSL:
```php
$fuzzyQuery = new FuzzyQuery('user', 'ki');
$search = new Search();
$search->addQuery($fuzzyQuery);
$queryArray = $search->toArray();
```
## With more advanced settings
```JSON
{
"fuzzy" : {
"user" : {
"value" : "ki",
"boost" : 1.0,
"fuzziness" : 2,
"prefix_length" : 0,
"max_expansions": 100
}
}
}
```
In DSL
```php
$fuzzyQuery = new FuzzyQuery(
'user',
'ki',
[
'boost' => 1,
'fuzziness' => 2,
'prefix_length' => 0,
'max_expansions' => 100,
]
);
$search = new Search();
$search->addQuery($fuzzyQuery);
$queryArray = $search->toArray();
```
[1]: https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-fuzzy-query.html